11 research outputs found

    An Approach Based on Particle Swarm Optimization for Inspection of Spacecraft Hulls by a Swarm of Miniaturized Robots

    Get PDF
    The remoteness and hazards that are inherent to the operating environments of space infrastructures promote their need for automated robotic inspection. In particular, micrometeoroid and orbital debris impact and structural fatigue are common sources of damage to spacecraft hulls. Vibration sensing has been used to detect structural damage in spacecraft hulls as well as in structural health monitoring practices in industry by deploying static sensors. In this paper, we propose using a swarm of miniaturized vibration-sensing mobile robots realizing a network of mobile sensors. We present a distributed inspection algorithm based on the bio-inspired particle swarm optimization and evolutionary algorithm niching techniques to deliver the task of enumeration and localization of an a priori unknown number of vibration sources on a simplified 2.5D spacecraft surface. Our algorithm is deployed on a swarm of simulated cm-scale wheeled robots. These are guided in their inspection task by sensing vibrations arising from failure points on the surface which are detected by on-board accelerometers. We study three performance metrics: (1) proximity of the localized sources to the ground truth locations, (2) time to localize each source, and (3) time to finish the inspection task given a 75% inspection coverage threshold. We find that our swarm is able to successfully localize the present so

    Cohort Profile: Burden of Obstructive Lung Disease (BOLD) study

    Get PDF
    The Burden of Obstructive Lung Disease (BOLD) study was established to assess the prevalence of chronic airflow obstruction, a key characteristic of chronic obstructive pulmonary disease, and its risk factors in adults (≥40 years) from general populations across the world. The baseline study was conducted between 2003 and 2016, in 41 sites across Africa, Asia, Europe, North America, the Caribbean and Oceania, and collected high-quality pre- and post-bronchodilator spirometry from 28 828 participants. The follow-up study was conducted between 2019 and 2021, in 18 sites across Africa, Asia, Europe and the Caribbean. At baseline, there were in these sites 12 502 participants with high-quality spirometry. A total of 6452 were followed up, with 5936 completing the study core questionnaire. Of these, 4044 also provided high-quality pre- and post-bronchodilator spirometry. On both occasions, the core questionnaire covered information on respiratory symptoms, doctor diagnoses, health care use, medication use and ealth status, as well as potential risk factors. Information on occupation, environmental exposures and diet was also collected

    3D printing dissolvable support material for time-dependent mechanisms

    No full text
    Thesis: S.M., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2019Cataloged from PDF version of thesis.Includes bibliographical references (pages 50-53).In this thesis, a novel approach to the use of dissolvable material is proposed: rather than 3D printing support structures strictly for supporting overhangs, we explore use cases derived from its ability to be dissolved when placed in a solvent, such as water. This enables a range of new use cases, such as quickly dissolving and replacing parts of a prototype during design iteration, printing temporary assembly labels directly onto objects that leave no visual artifacts once dissolved, and creating time-dependent mechanisms, such as fading in parts of an image in a shadow art piece or releasing scents from a 3D printed structure sequentially overnight. We use commercially available support material, rendering the approach usable on consumer 3D printers without any further modifications. To facilitate the design of objects that leverage dissolvable support, a custom 3D editor plugin is built that includes a simulation showing how support material dissolves over time. In our evaluation, our simulation predicted geometries that are statistically similar to the physically dissolved samples within 10% error across all samples.by Martin Nisser.S.M.S.M. Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Scienc

    PullupStructs: Digital Fabrication for Folding Structures via Pull-up Nets

    No full text

    Sequential Support: 3D Printing Dissolvable Support Material for Time-Dependent Mechanisms

    No full text
    In this paper, we propose a different perspective on the use of support material: rather than printing support structures for overhangs, our idea is to make use of its transient nature, i.e. the fact that it can be dissolved when placed in a solvent, such as water. This enables a range of new use cases, such as quickly dissolving and replacing parts of a prototype during design iteration, printing temporary assembly labels directly on the object that leave no marks when dissolved, and creating time-dependent mechanisms, such as fading in parts of an image in a shadow art piece or releasing relaxing scents from a 3D printed structure sequentially overnight. Since we use regular support material (PVA), our approach works on consumer 3D printers without any modifications. To facilitate the design of objects that leverage dissolvable support, we built a custom 3D editor plugin that includes a simulation showing how support material dissolves over time. In our evaluation, our simulation predicted geometries that are statistically similar to the example shapes within 10% error across all samples

    Demonstration of Mixels: Fabricating Interfaces using Programmable Magnetic Pixels

    No full text

    An Approach Based on Particle Swarm Optimization for Inspection of Spacecraft Hulls by a Swarm of Miniaturized Robots

    No full text
    The remoteness and hazards that are inherent to the operating environments of space infrastructures promote their need for automated robotic inspection. In particular, micrometeoroid and orbital debris impact and structural fatigue are common sources of damage to spacecraft hulls. Vibration sensing has been used to detect structural damage in spacecraft hulls as well as in structural health monitoring practices in industry by deploying static sensors. In this paper, we propose using a swarm of miniaturized vibration-sensing mobile robots realizing a network of mobile sensors. We present a distributed inspection algorithm based on the bio-inspired particle swarm optimization and evolutionary algorithm niching techniques to deliver the task of enumeration and localization of an a priori unknown number of vibration sources on a simplified 2.5D spacecraft surface. Our algorithm is deployed on a swarm of simulated cm-scale wheeled robots. These are guided in their inspection task by sensing vibrations arising from failure points on the surface which are detected by on-board accelerometers. We study three performance metrics: (1) proximity of the localized sources to the ground truth locations, (2) time to localize each source, and (3) time to finish the inspection task given a 75% inspection coverage threshold. We find that our swarm is able to successfully localize the present so
    corecore